-
Kubernetes Anonymous Request Authorized
This rule detects when an unauthenticated user request is authorized within the cluster. Attackers may attempt to use anonymous accounts to gain initial access to the cluster or to avoid attribution of their activities within the cluster. This rule excludes the /healthz, /livez and /readyz endpoints which are commonly accessed anonymously.
Read More -
This rule detects a container deployed with one or more dangerously permissive Linux capabilities. An attacker with the ability to deploy a container with added capabilities could use this for further execution, lateral movement, or privilege escalation within a cluster. The capabilities detected in this rule have been used in container escapes to the host machine.
Read More -
This rule detects when a service account makes an unauthorized request for resources from the API server. Service accounts follow a very predictable pattern of behavior. A service account should never send an unauthorized request to the API server. This behavior is likely an indicator of compromise or of a problem within the cluster. An adversary may have gained access to credentials/tokens and this could be an attempt to access or create resources to facilitate further movement or execution within the cluster.
Read More -
This rule detects an attempt to create or modify a service as type NodePort. The NodePort service allows a user to externally expose a set of labeled pods to the internet. This creates an open port on every worker node in the cluster that has a pod for that service. When external traffic is received on that open port, it directs it to the specific pod through the service representing it. A malicious user can configure a service as type Nodeport in order to intercept traffic from other pods or nodes, bypassing firewalls and other network security measures configured for load balancers within a cluster. This creates a direct method of communication between the cluster and the outside world, which could be used for more malicious behavior and certainly widens the attack surface of your cluster.
Read More -
This rule detects when a pod is created with a sensitive volume of type hostPath. A hostPath volume type mounts a sensitive file or folder from the node to the container. If the container gets compromised, the attacker can use this mount for gaining access to the node. There are many ways a container with unrestricted access to the host filesystem can escalate privileges, including reading data from other containers, and accessing tokens of more privileged pods.
Read More -
This rule detects an attempt to create or modify a pod using the host IPC namespace. This gives access to data used by any pod that also use the hosts IPC namespace. If any process on the host or any processes in a pod uses the hosts inter-process communication mechanisms (shared memory, semaphore arrays, message queues, etc.), an attacker can read/write to those same mechanisms. They may look for files in /dev/shm or use ipcs to check for any IPC facilities being used.
Read More -
This rules detects an attempt to create or modify a pod attached to the host network. HostNetwork allows a pod to use the node network namespace. Doing so gives the pod access to any service running on localhost of the host. An attacker could use this access to snoop on network activity of other pods on the same node or bypass restrictive network policies applied to its given namespace.
Read More -
This rule detects an attempt to create or modify a pod attached to the host PID namespace. HostPID allows a pod to access all the processes running on the host and could allow an attacker to take malicious action. When paired with ptrace this can be used to escalate privileges outside of the container. When paired with a privileged container, the pod can see all of the processes on the host. An attacker can enter the init system (PID 1) on the host. From there, they could execute a shell and continue to escalate privileges to root.
Read More -
This rule detects when a user creates a pod/container running in privileged mode. A highly privileged container has access to the node's resources and breaks the isolation between containers. If compromised, an attacker can use the privileged container to gain access to the underlying host. Gaining access to the host may provide the adversary with the opportunity to achieve follow-on objectives, such as establishing persistence, moving laterally within the environment, or setting up a command and control channel on the host.
Read More -
This rule detects a request to attach a controller service account to an existing or new pod running in the kube-system namespace. By default, controllers running as part of the API Server utilize admin-equivalent service accounts hosted in the kube-system namespace. Controller service accounts aren't normally assigned to running pods and could indicate adversary behavior within the cluster. An attacker that can create or modify pods or pod controllers in the kube-system namespace, can assign one of these admin-equivalent service accounts to a pod and abuse their powerful token to escalate privileges and gain complete cluster control.
Read More -
This rule detects when a service account or node attempts to enumerate their own permissions via the selfsubjectaccessreview or selfsubjectrulesreview APIs. This is highly unusual behavior for non-human identities like service accounts and nodes. An adversary may have gained access to credentials/tokens and this could be an attempt to determine what privileges they have to facilitate further movement or execution within the cluster.
Read More -
This rule detects a user attempt to establish a shell session into a pod using the 'exec' command. Using the 'exec' command in a pod allows a user to establish a temporary shell session and execute any process/commands in the pod. An adversary may call bash to gain a persistent interactive shell which will allow access to any data the pod has permissions to, including secrets.
Read More