-
This rule detects unusual spikes in error logs from web servers, which may indicate reconnaissance activities such as vulnerability scanning or fuzzing attempts by adversaries. These activities often generate a high volume of error responses as they probe for weaknesses in web applications. Error response codes may potentially indicate server-side issues that could be exploited.
Read More -
This rule detects potential web server discovery or fuzzing activity by identifying a high volume of HTTP GET requests resulting in 404 or 403 status codes from a single source IP address within a short timeframe. Such patterns may indicate that an attacker is attempting to discover hidden or unlinked resources on a web server, which can be a precursor to more targeted attacks.
Read More -
This rule detects potential command injection attempts via web server requests by identifying URLs that contain suspicious patterns commonly associated with command execution payloads. Attackers may exploit vulnerabilities in web applications to inject and execute arbitrary commands on the server, often using interpreters like Python, Perl, Ruby, PHP, or shell commands. By monitoring for these indicators in web traffic, security teams can identify and respond to potential threats early.
Read More -
This rule detects unusual spikes in error response codes (500, 502, 503, 504) from web servers, which may indicate reconnaissance activities such as vulnerability scanning or fuzzing attempts by adversaries. These activities often generate a high volume of error responses as they probe for weaknesses in web applications. Error response codes may potentially indicate server-side issues that could be exploited.
Read More -
This rule detects unusual spikes in web server requests with uncommon or suspicious user-agent strings. Such activity may indicate reconnaissance attempts by attackers trying to identify vulnerabilities in web applications or servers. These user-agents are often associated with automated tools used for scanning, vulnerability assessment, or brute-force attacks.
Read More -
This rule detects commonly abused network utilities running inside a container. Network utilities like nc, nmap, dig, tcpdump, ngrep, telnet, mitmproxy, zmap can be used for malicious purposes such as network reconnaissance, monitoring, or exploitation, and should be monitored closely within a container.
Read More -
This rule detects commonly abused network utilities running inside a container. Network utilities like nc, nmap, dig, tcpdump, ngrep, telnet, mitmproxy, zmap can be used for malicious purposes such as network reconnaissance, monitoring, or exploitation, and should be monitored closely within a container.
Read More -
This rule identifies a potential port scan. A port scan is a method utilized by attackers to systematically scan a target system or network for open ports, allowing them to identify available services and potential vulnerabilities. By mapping out the open ports, attackers can gather critical information to plan and execute targeted attacks, gaining unauthorized access, compromising security, and potentially leading to data breaches, unauthorized control, or further exploitation of the targeted system or network. This rule defines a threshold-based approach to detect connection attempts from a single source to a wide range of destination ports.
Read More -
This rule identifies a potential network sweep. A network sweep is a method used by attackers to scan a target network, identifying active hosts, open ports, and available services to gather information on vulnerabilities and weaknesses. This reconnaissance helps them plan subsequent attacks and exploit potential entry points for unauthorized access, data theft, or other malicious activities. This rule defines a threshold-based approach to detect multiple connection attempts from a single host to numerous destination hosts over commonly used network services.
Read More -
This rule identifies a potential SYN-Based port scan. A SYN port scan is a technique employed by attackers to scan a target network for open ports by sending SYN packets to multiple ports and observing the response. Attackers use this method to identify potential entry points or services that may be vulnerable to exploitation, allowing them to launch targeted attacks or gain unauthorized access to the system or network, compromising its security and potentially leading to data breaches or further malicious activities. This rule defines a threshold-based approach to detect connection attempts from a single source to a large number of unique destination ports, while limiting the number of packets per port.
Read More