Brand impersonation: Aramco

Impersonation of the petroleum and natural gas company Saudi Aramco.

Sublime rule (View on GitHub)

 1name: "Brand impersonation: Aramco"
 2description: |
 3    Impersonation of the petroleum and natural gas company Saudi Aramco.
 4type: "rule"
 5severity: "medium"
 6source: |
 7  type.inbound
 8  and length(filter(body.links, .href_url.domain.valid)) < 25
 9  and (
10    strings.ilike(sender.display_name, '*aramco*')
11    or strings.ilevenshtein(sender.display_name, 'aramco') <= 1
12    or strings.ilike(sender.email.domain.domain, '*aramco*')
13    or strings.ilike(subject.subject, '*aramco*')
14  )
15  and any(ml.nlu_classifier(body.current_thread.text).entities,
16          .name == "financial" or .name == "request"
17  )
18  and (
19    (
20      any(ml.nlu_classifier(body.current_thread.text).entities,
21          strings.ilike(.text, "*aramco*")
22      )
23      and any(ml.nlu_classifier(body.current_thread.text).entities,
24              .name == "urgency"
25      )
26    )
27    or regex.icount(body.current_thread.text, "vendor|supplier") > 3
28  )
29  
30  // Aramco domain negations
31  and sender.email.domain.root_domain not in~ (
32    'aramco.com',
33    'aramcoamericas.com',
34    'aramcoventures.com',
35    'aramcoworld.com',
36    'aramcodigital.com',
37    'aramcoeurope.com'
38  )
39  
40  // negate emails sent by the Aston Martin Aramco F1 Team
41  and sender.email.domain.root_domain != "astonmartinf1.com"
42  and not strings.icontains(subject.subject, 'Aston Martin')
43  and not regex.icontains(subject.subject, 'Formula (?:One|1)', '\bF1\b')
44
45  // negate highly trusted sender domains unless they fail DMARC authentication
46  and (
47    (
48      sender.email.domain.root_domain in $high_trust_sender_root_domains
49      and not headers.auth_summary.dmarc.pass
50    )
51    or sender.email.domain.root_domain not in $high_trust_sender_root_domains
52  )  
53attack_types:
54  - "BEC/Fraud"
55tactics_and_techniques:
56  - "Impersonation: Brand"
57  - "Lookalike domain"
58  - "Social engineering"
59detection_methods:
60  - "Content analysis"
61  - "Header analysis"
62  - "HTML analysis"
63  - "Natural Language Understanding"
64  - "Sender analysis"
65id: "96e87699-4007-53c1-a605-ee1cd398839c"
to-top