Request for Quote or Purchase (RFQ|RFP) with suspicious sender or recipient pattern
RFQ/RFP scams involve fraudulent emails posing as legitimate requests for quotations or purchases, often sent by scammers impersonating reputable organizations. These scams aim to deceive recipients into providing sensitive information or conducting unauthorized transactions, often leading to financial loss, or data leakage.
Sublime rule (View on GitHub)
1name: "Request for Quote or Purchase (RFQ|RFP) with suspicious sender or recipient pattern"
2description: |
3 RFQ/RFP scams involve fraudulent emails posing as legitimate requests for quotations or purchases, often sent by scammers impersonating reputable organizations.
4 These scams aim to deceive recipients into providing sensitive information or conducting unauthorized transactions, often leading to financial loss, or data leakage.
5type: "rule"
6severity: "medium"
7source: |
8 type.inbound
9 and 1 of (
10 (
11 (
12 length(recipients.to) == 0
13 or all(recipients.to,
14 .display_name in (
15 "Undisclosed recipients",
16 "undisclosed-recipients"
17 )
18 )
19 )
20 and length(recipients.cc) == 0
21 and length(recipients.bcc) == 0
22 ),
23 (
24 sender.email.domain.root_domain in $free_email_providers
25 and any(headers.reply_to, .email.email != sender.email.email)
26 and any(headers.reply_to, .email.email not in $recipient_emails)
27 ),
28 (
29 length(headers.reply_to) > 0
30 and all(headers.reply_to,
31 .email.domain.root_domain != sender.email.domain.root_domain
32 )
33 )
34 )
35 and (
36 2 of (
37 (
38 regex.icontains(body.current_thread.text,
39 '(discuss.{0,15}purchas(e|ing))'
40 )
41 ),
42 (
43 regex.icontains(body.current_thread.text,
44 '(sign(ed?)|view).{0,10}(purchase order)|Request for a Quot(e|ation)'
45 )
46 ),
47 (
48 regex.icontains(body.current_thread.text,
49 '(please|kindly).{0,30}quot(e|ation)'
50 )
51 ),
52 (
53 regex.icontains(subject.subject,
54 '(request for (purchase|quot(e|ation))|\bRFQ\b|\bRFP\b|bid invit(e|ation))'
55 )
56 ),
57 (
58 any(attachments,
59 regex.icontains(.file_name, "(purchase.?order|Quot(e|ation))")
60 )
61 ),
62 (
63 any(ml.nlu_classifier(body.current_thread.text).entities,
64 .name == "request"
65 )
66 and any(ml.nlu_classifier(body.current_thread.text).entities,
67 .name == "urgency"
68 )
69 ),
70 (
71 any(ml.nlu_classifier(body.current_thread.text).tags,
72 .name == "purchase_order" and .confidence == "high"
73 )
74 ),
75 (
76 0 < length(filter(body.links,
77 (
78 .href_url.domain.domain in $free_subdomain_hosts
79 or .href_url.domain.domain in $free_file_hosts
80 or network.whois(.href_url.domain).days_old < 30
81 )
82 and (
83 regex.match(.display_text, '[A-Z ]+')
84 or any(ml.nlu_classifier(.display_text).entities,
85 .name in ("request", "urgency")
86 )
87 )
88 )
89 ) < 3
90 )
91 )
92 or (
93 length(attachments) == 1
94 and length(body.current_thread.text) < 100
95 and all(attachments,
96 .file_type in $file_types_images
97 and any(file.explode(.),
98 2 of (
99 regex.icontains(.scan.ocr.raw,
100 '(discuss.{0,15}purchas(e|ing))'
101 ),
102 regex.icontains(.scan.ocr.raw,
103 '(sign(ed?)|view).{0,10}(purchase order)|Request for a Quot(e|ation)'
104 ),
105 regex.icontains(.scan.ocr.raw,
106 '(please|kindly).{0,30}quote'
107 ),
108 (
109 any(ml.nlu_classifier(.scan.ocr.raw).entities,
110 .name == "request"
111 )
112 and any(ml.nlu_classifier(.scan.ocr.raw).entities,
113 .name == "urgency"
114 )
115 ),
116 any(ml.nlu_classifier(.scan.ocr.raw).tags,
117 .name == "purchase_order" and .confidence == "high"
118 )
119 )
120 )
121 )
122 )
123 )
124
125 // negate highly trusted sender domains unless they fail DMARC authentication
126 and (
127 (
128 sender.email.domain.root_domain in $high_trust_sender_root_domains
129 and not headers.auth_summary.dmarc.pass
130 )
131 or sender.email.domain.root_domain not in $high_trust_sender_root_domains
132 )
133 and not profile.by_sender().solicited
134 and not profile.by_sender().any_false_positives
135
136attack_types:
137 - "BEC/Fraud"
138tactics_and_techniques:
139 - "Evasion"
140 - "Free email provider"
141detection_methods:
142 - "Content analysis"
143 - "Natural Language Understanding"
144 - "URL analysis"
145id: "2ac0d329-c1fb-5c87-98dd-ea3e5b85377a"