Credential Phishing: Suspicious language, link, recipients and other indicators
The rule flags inbound messages with no visible recipients, contain all-caps text, and include links from certain free hosts. It also checks for signs of credential theft using machine learning classifiers and is from an untrusted sender.
Sublime rule (View on GitHub)
1name: "Credential Phishing: Suspicious language, link, recipients and other indicators"
2description: |
3 The rule flags inbound messages with no visible recipients, contain all-caps text, and include links from certain free hosts. It also checks for signs of credential theft using machine learning classifiers and is from an untrusted sender.
4type: "rule"
5severity: "medium"
6source: |
7 type.inbound
8
9 // no recipients defined
10 and (
11 length(recipients.to) == 0
12 or all(recipients.to, .display_name == "Undisclosed recipients")
13 )
14 and length(recipients.cc) == 0
15 and length(recipients.bcc) == 0
16 and any(body.links,
17
18 // suspicious link
19 // we've particularly seen 1drv.ms abused
20 // if using the full list causes FPs, we can reduce the
21 // scope to a hard-coded list or add exclusions
22 (
23 .href_url.domain.domain in $free_file_hosts
24 or .href_url.domain.root_domain in $free_file_hosts
25 or .href_url.domain.root_domain in $free_subdomain_hosts
26 )
27
28 // link text is in all caps
29 and regex.match(.display_text, "[A-Z ]+")
30 )
31
32 // any confidence cred_theft classification
33 and any(ml.nlu_classifier(body.current_thread.text).intents,
34 .name == "cred_theft"
35 )
36
37 // 'org' entity is in all caps
38 and any(ml.nlu_classifier(body.current_thread.text).entities,
39 .name == "org" and regex.match(.text, "[A-Z ]+")
40 )
41
42 // subject is in all caps
43 and regex.match(subject.subject, "[A-Z ]+")
44 and (
45 profile.by_sender().prevalence in ("new", "outlier")
46 or (
47 profile.by_sender().any_messages_malicious_or_spam
48 and not profile.by_sender().any_false_positives
49 )
50 )
51
52attack_types:
53 - "Credential Phishing"
54tactics_and_techniques:
55 - "Evasion"
56detection_methods:
57 - "Content analysis"
58 - "Header analysis"
59 - "Natural Language Understanding"
60 - "Sender analysis"
61 - "URL analysis"
62id: "dcb39190-7ea1-5e82-8d6b-0242affdb6e3"