Brand impersonation: USPS
Impersonation of the United States Postal Service.
Sublime rule (View on GitHub)
1name: "Brand impersonation: USPS"
2description: "Impersonation of the United States Postal Service."
3type: "rule"
4severity: "high"
5source: |
6 type.inbound
7 and any(ml.logo_detect(beta.message_screenshot()).brands, .name == "USPS")
8 and length(body.links) > 0
9 and 2 of (
10 any(body.links,
11 strings.ilike(.display_text,
12 "*check now*",
13 "*track*",
14 "*package*",
15 '*view your order*'
16 )
17 ),
18 strings.ilike(body.current_thread.text,
19 "*returned*to*sender*",
20 "*redelivery*"
21 ),
22 // impersonal greeting
23 any(ml.nlu_classifier(body.current_thread.text).entities,
24 .name == "recipient" and .text =~ "Customer"
25 ),
26 // no links go to usps.com
27 all(body.links, .href_url.domain.root_domain != "usps.com")
28 )
29
30 and (
31 sender.email.domain.root_domain not in ("usps.com")
32 or (
33 sender.email.domain.root_domain in ("usps.com")
34 and not headers.auth_summary.dmarc.pass
35 )
36 )
37
38 // negate highly trusted sender domains unless they fail DMARC authentication
39 and (
40 (
41 sender.email.domain.root_domain in $high_trust_sender_root_domains
42 and not headers.auth_summary.dmarc.pass
43 )
44 or sender.email.domain.root_domain not in $high_trust_sender_root_domains
45 )
46attack_types:
47 - "Credential Phishing"
48tactics_and_techniques:
49 - "Image as content"
50 - "Impersonation: Brand"
51 - "Social engineering"
52detection_methods:
53 - "Computer Vision"
54 - "Content analysis"
55 - "Natural Language Understanding"
56 - "Sender analysis"
57id: "28b9130a-d8e0-50af-97c9-c1b8f4c46d68"