Business Email Compromise (BEC) attempt from untrusted sender (French/Français)
Detects potential Business Email Compromise (BEC) attacks by searching for common French BEC language within the email body from first-time senders.
Sublime rule (View on GitHub)
1name: "Business Email Compromise (BEC) attempt from untrusted sender (French/Français)"
2description: "Detects potential Business Email Compromise (BEC) attacks by searching for common French BEC language within the email body from first-time senders."
3type: "rule"
4severity: "medium"
5source: |
6 type.inbound
7 and length(body.links) == 0
8 and ml.nlu_classifier(body.current_thread.text).language == "french"
9 and 1 of (
10 regex.icontains(subject.subject,
11 '(mise (a|à) jour|changé|changement).{0,20}(bancaire|de banque)'
12 ),
13 regex.icontains(body.current_thread.text,
14 '(changement|changé) de (banque)|changement bancaire|coordonnées.{0,20}(compte|banque|bancaire|salaire)',
15 ),
16 (regex.icontains(body.current_thread.text, 'parler.{0,20}confiance'))
17 )
18 // negating legit replies
19 and not (
20 (
21 strings.istarts_with(subject.subject, "RE:")
22 // out of office auto-reply
23 // the NLU model will handle these better natively soon
24 or strings.istarts_with(subject.subject, "Automatic reply:")
25 or regex.imatch(subject.subject,
26 '(\[[^\]]+\]\s?){0,3}(re|fwd?|automat.*)\s?:.*'
27 )
28 )
29 and (
30 length(headers.references) > 0
31 or any(headers.hops, any(.fields, strings.ilike(.name, "In-Reply-To")))
32 )
33 )
34 and (
35 not profile.by_sender().solicited
36 or (
37 profile.by_sender().any_messages_malicious_or_spam
38 and not profile.by_sender().any_false_positives
39 )
40 )
41
42 // negate highly trusted sender domains unless they fail DMARC authentication
43 and (
44 (
45 sender.email.domain.root_domain in $high_trust_sender_root_domains
46 and not headers.auth_summary.dmarc.pass
47 )
48 or sender.email.domain.root_domain not in $high_trust_sender_root_domains
49 )
50
51attack_types:
52 - "BEC/Fraud"
53tactics_and_techniques:
54 - "Social engineering"
55detection_methods:
56 - "Content analysis"
57 - "Header analysis"
58 - "Sender analysis"
59id: "b7d1e096-d9cc-5a79-9753-5d9565794433"