Microsoft Build Engine Using an Alternate Name

An instance of MSBuild, the Microsoft Build Engine, was started after being renamed. This is uncommon behavior and may indicate an attempt to run unnoticed or undetected.

Elastic rule (View on GitHub)

  1[metadata]
  2creation_date = "2020/03/25"
  3integration = ["endpoint", "windows", "m365_defender"]
  4maturity = "production"
  5updated_date = "2024/10/15"
  6min_stack_version = "8.14.0"
  7min_stack_comments = "Breaking change at 8.14.0 for the Windows Integration."
  8
  9[transform]
 10[[transform.osquery]]
 11label = "Osquery - Retrieve DNS Cache"
 12query = "SELECT * FROM dns_cache"
 13
 14[[transform.osquery]]
 15label = "Osquery - Retrieve All Services"
 16query = "SELECT description, display_name, name, path, pid, service_type, start_type, status, user_account FROM services"
 17
 18[[transform.osquery]]
 19label = "Osquery - Retrieve Services Running on User Accounts"
 20query = """
 21SELECT description, display_name, name, path, pid, service_type, start_type, status, user_account FROM services WHERE
 22NOT (user_account LIKE '%LocalSystem' OR user_account LIKE '%LocalService' OR user_account LIKE '%NetworkService' OR
 23user_account == null)
 24"""
 25
 26[[transform.osquery]]
 27label = "Osquery - Retrieve Service Unsigned Executables with Virustotal Link"
 28query = """
 29SELECT concat('https://www.virustotal.com/gui/file/', sha1) AS VtLink, name, description, start_type, status, pid,
 30services.path FROM services JOIN authenticode ON services.path = authenticode.path OR services.module_path =
 31authenticode.path JOIN hash ON services.path = hash.path WHERE authenticode.result != 'trusted'
 32"""
 33
 34
 35[rule]
 36author = ["Elastic"]
 37description = """
 38An instance of MSBuild, the Microsoft Build Engine, was started after being renamed. This is uncommon behavior and may
 39indicate an attempt to run unnoticed or undetected.
 40"""
 41false_positives = ["The Build Engine is commonly used by Windows developers but use by non-engineers is unusual."]
 42from = "now-9m"
 43index = ["winlogbeat-*", "logs-endpoint.events.process-*", "logs-windows.sysmon_operational-*", "endgame-*", "logs-m365_defender.event-*"]
 44language = "eql"
 45license = "Elastic License v2"
 46name = "Microsoft Build Engine Using an Alternate Name"
 47note = """## Triage and analysis
 48
 49### Investigating Microsoft Build Engine Using an Alternate Name
 50
 51The OriginalFileName attribute of a PE (Portable Executable) file is a metadata field that contains the original name of the executable file when compiled or linked. By using this attribute, analysts can identify renamed instances that attackers can use with the intent of evading detections, application allowlists, and other security protections.
 52
 53The Microsoft Build Engine is a platform for building applications. This engine, also known as MSBuild, provides an XML schema for a project file that controls how the build platform processes and builds software, and can be abused to proxy execution of code.
 54
 55This rule checks for renamed instances of MSBuild, which can indicate an attempt of evading detections, application allowlists, and other security protections.
 56
 57> **Note**:
 58> This investigation guide uses the [Osquery Markdown Plugin](https://www.elastic.co/guide/en/security/master/invest-guide-run-osquery.html) introduced in Elastic Stack version 8.5.0. Older Elastic Stack versions will display unrendered Markdown in this guide.
 59
 60#### Possible investigation steps
 61
 62- Investigate the process execution chain (parent process tree) for unknown processes. Examine their executable files for prevalence, whether they are located in expected locations, and if they are signed with valid digital signatures.
 63- Investigate other alerts associated with the user/host during the past 48 hours.
 64- Investigate any abnormal behavior by the subject process such as network connections, registry or file modifications, and any spawned child processes.
 65- Examine the host for derived artifacts that indicate suspicious activities:
 66  - Analyze the process executable using a private sandboxed analysis system.
 67  - Observe and collect information about the following activities in both the sandbox and the alert subject host:
 68    - Attempts to contact external domains and addresses.
 69      - Use the Elastic Defend network events to determine domains and addresses contacted by the subject process by filtering by the process' `process.entity_id`.
 70      - Examine the DNS cache for suspicious or anomalous entries.
 71        - $osquery_0
 72    - Use the Elastic Defend registry events to examine registry keys accessed, modified, or created by the related processes in the process tree.
 73    - Examine the host services for suspicious or anomalous entries.
 74      - $osquery_1
 75      - $osquery_2
 76      - $osquery_3
 77  - Retrieve the files' SHA-256 hash values using the PowerShell `Get-FileHash` cmdlet and search for the existence and reputation of the hashes in resources like VirusTotal, Hybrid-Analysis, CISCO Talos, Any.run, etc.
 78
 79### False positive analysis
 80
 81- This activity is unlikely to happen legitimately. Benign true positives (B-TPs) can be added as exceptions if necessary.
 82
 83### Response and remediation
 84
 85- Initiate the incident response process based on the outcome of the triage.
 86- Isolate the involved host to prevent further post-compromise behavior.
 87- If the triage identified malware, search the environment for additional compromised hosts.
 88  - Implement temporary network rules, procedures, and segmentation to contain the malware.
 89  - Stop suspicious processes.
 90  - Immediately block the identified indicators of compromise (IoCs).
 91  - Inspect the affected systems for additional malware backdoors like reverse shells, reverse proxies, or droppers that attackers could use to reinfect the system.
 92- Remove and block malicious artifacts identified during triage.
 93- Run a full antimalware scan. This may reveal additional artifacts left in the system, persistence mechanisms, and malware components.
 94- Determine the initial vector abused by the attacker and take action to prevent reinfection through the same vector.
 95- Using the incident response data, update logging and audit policies to improve the mean time to detect (MTTD) and the mean time to respond (MTTR).
 96"""
 97risk_score = 21
 98rule_id = "9d110cb3-5f4b-4c9a-b9f5-53f0a1707ae4"
 99severity = "low"
100tags = [
101    "Domain: Endpoint",
102    "OS: Windows",
103    "Use Case: Threat Detection",
104    "Tactic: Defense Evasion",
105    "Tactic: Execution",
106    "Data Source: Elastic Endgame",
107    "Resources: Investigation Guide",
108    "Data Source: Elastic Defend",
109    "Data Source: Sysmon",
110    "Data Source: Microsoft Defender for Endpoint",
111]
112timestamp_override = "event.ingested"
113type = "eql"
114
115query = '''
116process where host.os.type == "windows" and event.type == "start" and
117  process.pe.original_file_name == "MSBuild.exe" and
118  not process.name : "MSBuild.exe"
119'''
120
121
122[[rule.threat]]
123framework = "MITRE ATT&CK"
124[[rule.threat.technique]]
125id = "T1036"
126name = "Masquerading"
127reference = "https://attack.mitre.org/techniques/T1036/"
128[[rule.threat.technique.subtechnique]]
129id = "T1036.003"
130name = "Rename System Utilities"
131reference = "https://attack.mitre.org/techniques/T1036/003/"
132
133
134[[rule.threat.technique]]
135id = "T1127"
136name = "Trusted Developer Utilities Proxy Execution"
137reference = "https://attack.mitre.org/techniques/T1127/"
138[[rule.threat.technique.subtechnique]]
139id = "T1127.001"
140name = "MSBuild"
141reference = "https://attack.mitre.org/techniques/T1127/001/"
142
143
144
145[rule.threat.tactic]
146id = "TA0005"
147name = "Defense Evasion"
148reference = "https://attack.mitre.org/tactics/TA0005/"

Triage and analysis

Investigating Microsoft Build Engine Using an Alternate Name

The OriginalFileName attribute of a PE (Portable Executable) file is a metadata field that contains the original name of the executable file when compiled or linked. By using this attribute, analysts can identify renamed instances that attackers can use with the intent of evading detections, application allowlists, and other security protections.

The Microsoft Build Engine is a platform for building applications. This engine, also known as MSBuild, provides an XML schema for a project file that controls how the build platform processes and builds software, and can be abused to proxy execution of code.

This rule checks for renamed instances of MSBuild, which can indicate an attempt of evading detections, application allowlists, and other security protections.

Note: This investigation guide uses the Osquery Markdown Plugin introduced in Elastic Stack version 8.5.0. Older Elastic Stack versions will display unrendered Markdown in this guide.

Possible investigation steps

  • Investigate the process execution chain (parent process tree) for unknown processes. Examine their executable files for prevalence, whether they are located in expected locations, and if they are signed with valid digital signatures.
  • Investigate other alerts associated with the user/host during the past 48 hours.
  • Investigate any abnormal behavior by the subject process such as network connections, registry or file modifications, and any spawned child processes.
  • Examine the host for derived artifacts that indicate suspicious activities:
    • Analyze the process executable using a private sandboxed analysis system.
    • Observe and collect information about the following activities in both the sandbox and the alert subject host:
      • Attempts to contact external domains and addresses.
        • Use the Elastic Defend network events to determine domains and addresses contacted by the subject process by filtering by the process' process.entity_id.
        • Examine the DNS cache for suspicious or anomalous entries.
          • $osquery_0
      • Use the Elastic Defend registry events to examine registry keys accessed, modified, or created by the related processes in the process tree.
      • Examine the host services for suspicious or anomalous entries.
        • $osquery_1
        • $osquery_2
        • $osquery_3
    • Retrieve the files' SHA-256 hash values using the PowerShell Get-FileHash cmdlet and search for the existence and reputation of the hashes in resources like VirusTotal, Hybrid-Analysis, CISCO Talos, Any.run, etc.

False positive analysis

  • This activity is unlikely to happen legitimately. Benign true positives (B-TPs) can be added as exceptions if necessary.

Response and remediation

  • Initiate the incident response process based on the outcome of the triage.
  • Isolate the involved host to prevent further post-compromise behavior.
  • If the triage identified malware, search the environment for additional compromised hosts.
    • Implement temporary network rules, procedures, and segmentation to contain the malware.
    • Stop suspicious processes.
    • Immediately block the identified indicators of compromise (IoCs).
    • Inspect the affected systems for additional malware backdoors like reverse shells, reverse proxies, or droppers that attackers could use to reinfect the system.
  • Remove and block malicious artifacts identified during triage.
  • Run a full antimalware scan. This may reveal additional artifacts left in the system, persistence mechanisms, and malware components.
  • Determine the initial vector abused by the attacker and take action to prevent reinfection through the same vector.
  • Using the incident response data, update logging and audit policies to improve the mean time to detect (MTTD) and the mean time to respond (MTTR).

Related rules

to-top